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INTRODUCTION

In many instances, experimental data consist of a series of

oscillations bounded by upper and lower curves which are envelopes.

Such behavior is frequently observed when interference effects are

superimposed on a slowly varying trend. By knowing the envelope

functions one may be able to deduce physical properties giving rise

to the observed phenomenon. An example of this is the envelope

method used by Manifacier et al.^ to obtain the optical constants

and thicknesses of weakly absorbing films from transmission

spectra. It would therefore be useful if a simple automated

procedure could be used to obtain the envelope functions,

especially in numerical form. In this paper we describe an

iterative method for calculating the envelope curves of a given set

of oscillatory data. In an example, we analyze a set of

transmission data on the basis of the paper by Manifacier et al.^

and compare the results with a manual method.

THE PROCEDURE

The envelopes of a given oscillatory function T(x) are two

smooth curves that in some sense represent the maximum and minimum

values of T(x)

.

By "smooth" it is meant here that the envelopes

have very few inflection points compared with T(x)

;

often they have

no inflection points at all. The envelopes are constrained to lie

tangent to T(x) and not to cross it. The top envelope lies

above the function, i.e., Tj^^(x) > T(x)

,

while the bottom envelope

T^^-^(x) lies below the function, i.e., T^jn(x) < T(x) . Figure 1
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shows a schematic representation of an oscillatory function T(x)

and its envelopes
'^niin(^)

* Note that the points of

tangency are not the same as the critical points (i.e., the local

extrema) of T(x)

.

The tangent points often lie near the critical

points, but this is not always the case; see for example the

left-most tangent point in Figure 1.

The following steps outline a procedure for calculating

envelope curves:

Step 1

.

Smooth the given data.

Step 2

.

Estimate the locations of the upper and lower tangent

points

.

Step 3

.

Interpolate a curve through the estimated upper tangent

points and another through the estimated lower tangent

points.

Step 4

.

If no points on the upper curve lie below the smoothed

data and no points on the lower curve lie above the

smoothed data, then stop. The upper curve is the top

envelope T^^^, and the lower curve is the bottom envelope

min

Step 5. Otherwise, improve the estimates of the tangent point

locations and return to Step 3

.

In what follows, the calculation of the top envelope is discussed

in detail. The calculation of the bottom envelope is exactly

analogous

.

The only input required by the envelope algorithm is the set

of data points (x,y) whose envelope is to be computed. Due to the
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likely presence of small errors in the data, the original set of

data points is not used directly but is replaced by a smoother set

(Step 1 above) . The smoothed data points are obtained by

evaluating a spline function T(x) which is computed to be a least

squares fit to the original data. T(x) is required to lie within

a specified error tolerance e of each original data point; that is,

for each data point (x,y)
,

|T(x)-y| < e. Two separate smoothing

functions are employed in the course of the envelope calculation:

a rough initial smoothing Tq(x) that is used in the first

estimation of the tangent point locations and a more accurate final

smoothing T(x) that is used in determining the envelope curve.

The envelope algorithm starts by estimating the locations of

the points where Tj^j^(x) is tangent to Tq(x) (Step 2 above). The

obvious choices for these tangent point estimates are the local

maxima of Tq(x)

.

However, as noted above, not every tangent point

is near a maximum point, so a more generally applicable estimation

method is employed. This algorithm first finds the intervals where

Tg(x) opens downward, i.e., where Tg"(x) < 0. It then places a

tangent point estimate halfway between the endpoints of each of

these inteirvals, as shown in Figure 2. The endpoints are the

inflection points of Tg(x)
, i.e., points where Tg"(x) = 0. (The

second derivative information needed for determining the inflection

points and the direction of curvature is obtained during the

smoothing process in Step 1.)

Downward-opening intervals containing the first or last data

point ("endpoint intervals") require special treatment. In some
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cases, the data for these intervals might be incomplete; that is,

if the data could be extended, Tq(x) would continue to open

downward for some interval beyond the original endpoint. The true

tangent point for such an interval might then lie outside the range

of the original data, as shown in Figure 3. The envelope algorithm

does not attempt to estimate such tangent points. It will produce

a tangent point estimate for an endpoint interval only if it

contains a point where Tg' (x) =0, and the tangent point estimate

will be set to be this point, as shown in Figure 4(a). For an

endpoint interval that does not contain such a point, no tangent

point estimate will be produced and the resulting envelope curve

will stop with the neighboring downward-opening interval, as shown

in Figures 4(b) and 4(c). Recall again that not every tangent

point is near a maximum point, so this method for handling endpoint

intervals will occasionally miss valid tangent points, as in Figure

4(c), but it will not include invalid ones.

The initial estimation of the tangent points is the most

critical part of the envelope calculation, and it depends heavily

on the initial smoothing of the data. If the smoothed curve Tq(x)

does not match the data closely enough, there will be too few

inflection points and hence too few tangent points. On the other

hand, if Tg(x) matches the data too closely there are likely to be

many undesirable inflection points, and these will produce spurious

tangent point estimates, as shown in Figure 5. It may be necessary

to experiment with various error tolerances e before finding a

Tg(x) that leads to appropriate tangent point estimates.
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Next, a first approximation to the envelope curve is obtained

by interpolating a smooth curve through the estimated tangent

points (Step 3 above). The interpolated curve I(x) is required to

preserve monotonic behavior; that is, if the tangent points

increase (or decrease) with x, the resulting envelope curve does

also. If the tangent points are not monotonic, the interpolation

method forces an extreme point in the envelope curve at any point

where the direction of monotonicity changes.

The first approximation to the envelope curve will generally

not be truly tangent to the smoothed data curve, unless the initial

tangent point estimates happen to be exactly correct. In most

cases, the interpolated curve will cut below the peaks of the data

curve, as shown in Figure 6. Around each of the estimated tangent

points, there will be an interval where I(x) < T(x)

.

(The estimated

tangent point will actually be one of the endpoints of the

interval.) The points of tangency of the true envelope T^ax(^) with

T(x) must lie somewhere on these intervals. The algorithm proceeds

(Step 5 above) by taking the midpoints of each of these intervals

as new estimates for the tangent points, as shown in Figure 7.

When checking for envelope points that lie below T(x), it is

generally desirable to use a smoothing fit that tightly matches

the original data. This is especially necessary in the regions

closely surrounding the tangent points, in order that the final

envelope curve will be as accurate as possible. The initial

smoothing function Tg(x) used to obtain the first tangent point

estimates may not have sufficient accuracy to serve as the final
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smoothing, so it is generally necessary to try another spline fit

T(x) with a smaller error tolerance e in order to produce the

desired accuracy in the final envelope curve.

When the new tangent point estimates have been computed, a new

curve I(x) is interpolated through them, which should lie closer

to the true envelope. This process of finding new estimates for

the tangent points and interpolating a curve through them is

repeated until either no points on the interpolated curve lie

beneath the data curve (Step 4 above) or until a maximum of twenty

iterations have been performed. The resulting interpolated curve

I(x) should lie very close to the true envelope

We have implemented this envelope algorithm as a FORTRAN

program running on an IBM PC or compatible computer. To smooth the

data, we use the least squares spline-fitting subroutine EFC^,

augmented by a subroutine that automatically generates breakpoints

for the spline (i.e., the points where the polynomial pieces of the

spline are joined) . To interpolate a monotonic function through

the tangent estimates, we use the subroutine PCHIM^. Both of these

subroutines are part of SLATEC^, a public domain mathematical

software library available from Argonne National Laboratory. The

main program allows the user to request a data set and to enter the

tolerance factors to be used for the data smoothing. The data and

the resulting envelope curves are then plotted on the screen. The

user has several options: (1) redo the envelope calculation with

different error tolerances, (2) produce a high-quality hard copy

of the plot, or (3) save the envelope data and tangent point
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locations in a file.

A typical wall-clock running time for the program on an IBM

PC/AT is about 1.75 minutes for a data set containing 800 points.

(This time does not include plotting and saving the results.)

Approximately 1.25 minutes are spent on smoothing the data, while

0.50 minutes are spent on calculating the envelopes.

AN APPLICATION

Figure 8 shows the optical transmission of film composed of

a mixture of yttria and silica deposited on a fused silica

substrate. Shown superimposed on the data are the envelope

functions computed by the procedure described above. The method

of Manifacier et al.^ has been used to obtain the refractive index,

n, the absorption coefficient, a, and the thickness, t, of the film

from the envelope functions.

The transmittance, T, of a weakly absorbing film on a

transparent substrate can be represented by

n^n^n^A
T = (1)

C,^+C2^A^+2C,C2Acos ( 47rnt/\

)

where C^ = (n+n^) (n^+n)
, C

2 = (n-n^) (n^-n) , A = exp (-47rkt/x )
=

exp (-at) , n^j is the refractive index of the ambient (air) , n^ is the

refractive index of the substrate, k is the imaginary part of the

refractive index of the film, and X is the wavelength of the

radiation. In general, each of the parameters except t are

functions of X . Equation (1) is an oscillatory function with
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envelope curves given by

T,
max

(Cj+CjA)^
( 2 )

and

T -

min
(C,-CjA)^

(3)

as can be seen by taking the cosine to be +1 or -1. While there

is no guarantee that the envelope algorithm described in this paper

will produce the curves given by equations (2) and (3) , it is

believed to give a close approximation. The procedures for

calculating n, a (or k) and t from the envelope functions and the

points of tangency will not be repeated here, as they are discussed

in Manifacier et al. The results are shown in Figure 9 where n is

plotted as a function of X and in Figure 10 where a is plotted as

a function of X . Figure 9 also shows the values obtained by an

earlier manual procedure^. We see that the absorption coefficient

data agree quite well. The refractive index data also agree

reasonably well. (Note that the vertical scale is expanded and does

not begin at zero.) The value obtained for thickness was 0.58 (iia.

which agrees reasonably well with a mechanical thickness

measurement of 0.60 /xm and a value from the manual data analysis

procedure of 0.56 /xm.
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SUMMARY

A procedure has been developed to numerically calculate the

envelope functions of an oscillatory curve. The method has been

shown to be applicable to optical transmission data, but it is

general enough to be used for many other data sets. The computer

program is available on request.
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FIGURE CAPTIONS

Figure 1. Schematic representation of an oscillatory function and

its envelopes. The dots represent the points of tangency of the

function with its envelopes.

Figure 2. A method for obtaining initial estimates of tangent

points. A tangent estimate is set at the midpoint of each

downward-opening interval bounded by two inflection points.

Figure 3 . A problem with estimating tangent points near the ends

of the data. In this figure, the right-most downward-opening

interval of the data cuirve is incomplete. If it could be extended

(as the dotted curve indicates)
, the true tangent point would be

seen to lie beyond the end of the original data. Using any point

in the existing data as a tangent point estimate would produce an

"envelope curve" very different from the true envelope curve.
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Figure 4. Examples of a method for estimating tangent points for

endpoint intervals. In (a) , both endpoint intervals contain points

where the derivative is zero, implying that the tangent points for

these intervals probably lie nearby, within the range of the data.

Tangent point estimates are produced for both intervals. In (b)

,

the righthand endpoint interval does not contain a point where the

derivative is zero, so there is no guarantee that the tangent point

lies within the range of the data. No tangent point estimate is

produced for this interval. In (c)

,

neither endpoint interval

contains a point where the derivative is zero, so no tangent point

estimate is produced for either end. In this picture, the method

misses two valid tangent points.

Figure 5. A spurious tangent point, caused by a small wiggle in

the smoothed data curve. This leads to an unacceptable envelope

curve.

Figure 6. The first approximation to the envelope curve usually

lies below the true envelope.

Figure 7. Obtaining an improved tangent point estimate. The first

approximation to the envelope curve cuts off the peaks of the data

curve. A new tangent point estimate is set at the midpoint of each

cut-off interval.
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Figure 8. Transmittance vs. wavelength of a mixed yttria-silica

film after subtraction of reflection from the air-silica surface

of the substrate. This figure, showing experimental data, smoothed

data, and fitted envelope curves, was produced directly by the

envelope program.

Figure 9. Refractive index vs. wavelength of a mixed yttria-silica

film. The squares represent results obtained by a prior manual

analysis, the solid curve represents results calculated from the

fitted envelope curves, and the dashed curve represents a fit to

the manual data.

Figure 10. Absorption coefficient vs. wavelength of a mixed

yttria-silica film. The squares represent results obtained by a

prior manual analysis and the solid curve represents results

calculated from the fitted envelope curves.
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